skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shimasaku, Kazuhiro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present luminosity functions (LFs) and angular correlation functions (ACFs) derived from 18,960 Lyαemitters (LAEs) atz = 2.2−7.3 over a wide survey area of ≲24 deg2that are identified in the narrowband data of the HSC-SSP and CHORUS surveys. Confirming the large sample with 241 spectroscopically identified LAEs, we determine LyαLFs and ACFs in the brighter luminosity range down to 0.5L, and confirm that our measurements are consistent with previous studies but offer significantly reduced statistical uncertainties. The improved precision of our ACFs allows us to clearly detect one-halo terms at some redshifts, and provides large-scale bias measurements that indicate host halo masses of ∼1011Moverz ≃ 2−7. By comparing our LyαLF (ACF) measurements with reionization models, we estimate the neutral hydrogen fractions in the intergalactic medium to bexHi < 0.05 (= 0.06 0.03 + 0.12 ) atz= 5.7 andxHi= 0.1 5 0.08 + 0.10 ( 0.21 0.14 + 0.19 ), 0.1 8 0.12 + 0.14 , and 0.7 5 0.13 + 0.09 atz= 6.6, 7.0, and 7.3, respectively. Our findings suggest that the neutral hydrogen fraction remains relatively low,xHi ≲ 0.2, atz = 5−7, but increases sharply atz > 7, reachingxHi ∼ 0.9 byz ≃ 8−9, as indicated by recent JWST studies. The combination of our results from LAE observations with recent JWST observations suggests that the major epoch of reionization occurred atz ∼ 7−8, likely driven by the emergence of massive sources emitting significant ionizing photons. 
    more » « less
    Free, publicly-accessible full text available March 18, 2026
  2. Free, publicly-accessible full text available August 11, 2026
  3. The detection of starlight from the host galaxies of quasars during the reionization epoch (z > 6) has been elusive, even with deep HST observations1,2. The current highest redshift quasar host detected3, at z = 4.5, required the magnifying effect of a foreground lensing galaxy. Low-luminosity quasars4,5,6 from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP)7 mitigate the challenge of detecting their underlying, previously-undetected host galaxies. Here we report rest-frame optical images and spectroscopy of two HSC-SSP quasars at z > 6 with JWST. Using NIRCam imaging at 3.6μm and 1.5μm and subtracting the light from the unresolved quasars, we find that the host galaxies are massive (stellar masses of 13 × and 3.4 × 1010 M⊙, respectively), compact, and disk-like. NIRSpec medium-resolution spectroscopy shows stellar absorption lines in the more massive quasar, confirming the detection of the host. Velocity-broadened gas in the vicinity of these quasars enables measurements of their black hole masses (1.4 × 109 and 2.0 × 108 M⊙, respectively). Their location in the black hole mass - stellar mass plane is consistent with the distribution at low redshift, suggesting that the relation between black holes and their host galaxies was already in place less than a billion years after the Big Bang. 
    more » « less
  4. null (Ed.)